On Multiple Response Optimization: Desirability Functions and Artificial Neural Networks
نویسندگان
چکیده
There are several different approaches used for the optimization of multiple response surface problems. Recently desirability functions and neural network approaches are used in many related studies. In this study multiple response optimization is investigated using desirability functions in response surface methodology and artificial neural networks. The results of these approaches are investigated and discussed.
منابع مشابه
Optimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm
This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...
متن کاملA Comparison of Regression and Neural Network Based for Multiple Response Optimization in a Real Case Study of Gasoline Production Process
Most of existing researches for multi response optimization are based on regression analysis. However, the artificial neural network can be applied for the problem. In this paper, two approaches are proposed by consideration of both methods. In the first approach, regression model of the controllable factors and S/N ratio of each response has been achieved, then a fuzzy programming has been app...
متن کاملHYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کاملبهینه سازی فرآیند با چند سطح پاسخ به وسیله شبکههای عصبی برمبنای مفهوم مطلوبیت
In this paper, a method is proposed for Multiple Response Optimization (MRO) by neural networks and uses desirability of each response for forecasting. The used neural network is a feed forward back propagation one with two hidden layers. The numbers of neurons in the hidden layers are determined using MSE criterion for training and test data. The numbers on neurons of the first layer last laye...
متن کاملA neuro-data envelopment analysis approach for optimization of uncorrelated multiple response problems with smaller the better type controllable factors
In this paper, a new method is proposed to optimize a multi-response optimization problem based on the Taguchi method for the processes where controllable factors are the smaller-the-better (STB)-type variables and the analyzer desires to find an optimal solution with smaller amount of controllable factors. In such processes, the overall output quality of the product should be maximized while t...
متن کامل